Optimization of self-organizing polynomial neural networks
نویسنده
چکیده
0957-4174/$ see front matter 2013 Elsevier Ltd. A http://dx.doi.org/10.1016/j.eswa.2013.01.060 ⇑ Tel.: +385 1 4561191. E-mail address: [email protected] The main disadvantage of self-organizing polynomial neural networks (SOPNN) automatically structured and trained by the group method of data handling (GMDH) algorithm is a partial optimization of model weights as the GMDH algorithm optimizes only the weights of the topmost (output) node. In order to estimate to what extent the approximation accuracy of the obtained model can be improved the particle swarm optimization (PSO) has been used for the optimization of weights of all node-polynomials. Since the PSO is generally computationally expensive and time consuming a more efficient Levenberg–Marquardt (LM) algorithm is adapted for the optimization of the SOPNN. After it has been optimized by the LM algorithm the SOPNN outperformed the corresponding models based on artificial neural networks (ANN) and support vector method (SVM). The research is based on the meta-modeling of the thermodynamic effects in fluid flow measurements with time-constraints. The outstanding characteristics of the optimized SOPNN models are also demonstrated in learning the recurrence relations of multiple superimposed oscillations (MSO). 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Self-Organizing Polynomial Neural Network for Modelling Complex Hydrological Processes
Artificial neural networks (ANNs) have been used increasingly for modelling com-plex hydrological processes. In this paper, we present a self-organizing polynomial neural network (SOPNN) algorithm, which combines the theory of bio-cybernetic self-organizing polynomial (SOP) with the artificial neural network (ANN) approach. With the SOP feature of seeking the best combination of polynomial mode...
متن کاملSelf-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture 423 Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture
In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the “conventional” SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials...
متن کاملSelf-Organizing Hybrid Neurofuzzy Networks
We introduce a concept of self-organizing Hybrid Neurofuzzy Networks (HNFN), a hybrid modeling architecture combining neurofuzzy (NF) and polynomial neural networks(PNN). The development of the Self-organizing HNFN dwells on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The architecture of the Self-organizing HNFN results from a...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 40 شماره
صفحات -
تاریخ انتشار 2013